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Estimating Beta

1. Introduction

The valuation of risky assets is one of the major research tasks in financial economics that  has led to the

development of several Capital Asset Pricing Models, the most popular of which is the Sharpe-Lintner-Black

mean-variance CAPM.  In this model, the typical measure of asset riskiness is the beta, i.e. the covariance

between the asset return and the market portfolio return. The basic tenet of CAPM lies in the separation of

estimating beta risk from its pricing.  Indeed CAPM assumes that one can define and measure systematic risk

irrespective of risk aversion, which affects only the equilibrium pricing of individual assets.  As is well

known, this separation is valid only under the restrictive assumption of  two-factor separating distributions

or alternatively, if the utility function is quadratic.

Empirical asset-pricing models attract massive attention in finance, their goal being to assert or refute

whether CAPM holds true.  The traditional technique used to estimate the risk-expected return relation

consists of two stages.  In the first pass, betas are estimated from a time-series.  In the second pass, the

relationship between mean returns and betas is tested across firms or portfolios.  This methodology has been

the subject of much criticism that has led to many attempts at improvement. Such studies were initiated by

Fama and MacBeth (1973) who introduced a rolling technique, and were followed by proponents of

maximum likelihood estimation, for example Gibbons (1982), Stambaugh (1982), and Shanken (1992), to

name a few.  MacKinlay and Richardson (1991) developed a test for mean-variance efficiency without

assuming normally distributed asset returns. However, CAPM suffered a major setback due to a series of

papers published by Fama and French (1992, 1993, 1995, 1996, and 1997) who claimed that beta itself is not

sufficient for explaining expected return.  On the other hand, using alternative econometric  and experimental

techniques, Amihud, Christensen, and Mendelson (1992), Jagannathan and Wang (1996), and Levy (1997)

rejected Fama  and French results and reclaimed beta as the valid measure of  risk in asset pricing .  All these

findings point to a major question: Is beta relevant in finance or is it merely mis-estimated?
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Since its inception in finance, beta has been used mainly for two purposes.  The first involves the

ranking of assets and portfolios with respect to systematic risk by practitioners.  The second deals with testing

CAPM and mean-variance efficiency.  The latter process involves a second stage regression (cross-section 

regression) intended for testing the efficiency of the market portfolio and the linear relationship between

expected returns and betas, as discussed for example by Kandel and Stambaugh (1995).

An additional issue that complicates the problem of estimating beta is that one cannot separate the

issue of risk aversion from the statistical loss function used in the estimation.  As will be argued later, risk

aversion signifies the asymmetric treatment of deviations from the regression of stock returns on market

returns.  On the other hand, statistical theory implies the equal treatment of observations.  The clash between

financial and statistical theories complicates the estimation procedure, and therefore, we restrict our study to

estimating assets’ riskiness  and delay the pricing of risk to further research. 

In this paper we question whether the standard procedure for estimating systematic risk is compatible

with financial theory and  show how the regression technique used to estimate systematic risk is not robust

with respect to wide market fluctuations.  The sensitivity of beta to the presence of extreme observations can

give rise to data mining and lead the way to peculiar relationships. 

We argue that beta sensitivity can be traced to a combination of two factors:

(i) Incompatibility between standard statistical methods and financial theory. In particular, the

Ordinary Least-Squares (OLS) regression estimator is based on a quadratic weighting scheme that tends to

contravene the assumptions of risk aversion;

(ii) Probability distribution of market returns with "fat" tails; that is the data do not follow a normal

distribution.1

Accordingly, these factors make beta sensitive to market fluctuations and therefore OLS is inappropriate for

estimating  betas.

We suggest alternative estimators for beta that are robust with respect to extreme fluctuations in the

market return.  In this sense, we follow Chan and Lakonishok (1992) and Knez and Ready (1997) for the use

of robust estimation procedures, but with a different rationale.  In using trimmed regressions to seek
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robustness, crucial information regarding the behavior of securities returns with respect to market portfolio

is removed for the sake of robustness.  The data that becomes deleted may be considered by some investors

as the most valuable because it represents information about the state of nature that concerns them the most.

Therefore, we do not seek robustness by using statistical methods that are less sensitive to generally wide

fluctuations.  Rather, we seek to identify, according to economic theory, the relative weights that should be

attached to different fluctuations.  Adjusting  the weighting scheme following  economic theory allows for

improving the systematic risk estimator at low cost.

To document the magnitude of the sensitivity of beta to market fluctuations and to avoid any influence

of small or unusual companies, we first consider the 30 firms in the Dow Jones Industrial Average (DJIA) and

then, 20 portfolios that have been built with the 100 largest traded firms.  We use CRSP daily returns for a

period of ten years (January 1984 through December 1993) making  a total of 2528 observations.  The use of

the daily returns was guided by two motivations:

(i)  Daily returns provide a relatively large amount of data.  Since we are interested in the effect of

extreme observations on the estimates, such as those that appeared during the 1987 Crash, a large amount of

data will reduce the effect of any one observation.  Ignoring the 1987 Crash altogether would imply that

periods of high volatility do not play an important role in any estimate;

(ii) Monthly returns are obtained by averaging daily returns. Thus they are expected to deviate from

normality less than daily returns do.2  But as pointed out by Levy and Schwartz (1997), the longer the

measurement period the lower will be the observed correlations among asset returns.  Also, Levhari and Levy

(1977) discuss the effect of the investment horizon on the empirical testing of beta.  Hence, increasing the

measurement period may "normalize" the distributions but at the same time will reduce the correlation among

the returns which defeats the main goal in estimating beta. 

Using these data, we conduct two experiments.  In the first, the highest four market performance

observations based on the S&P 500 Index are removed from the sample and the betas are re-estimated.  In the

second, the highest four and the lowest four observations of the market are deleted (a total of less than 0.3

percent of the entire number of observations).  Table 1a  reports the deviations of the new estimates of betas

in terms of their standard errors.3 
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 When the highest four and the lowest four market returns are removed, the betas of 7 firms (out of

30) change by more than 4 standard errors.  Moreover, the betas of more than 75% of the firms change by

more than one standard error.  When only the highest four observations are omitted, then the betas of 9 firms

(30 percent of the firms) change by more than one standard error.  However, the impression one gets from the

standard errors using the entire sample, as reported in the Appendix, is that the probability of such occurrences

is zero.  

In Table 1b, these same conclusions are also obtained with beta ranked portfolios that reduce the

problem of sharp return fluctuations for individual firms.  When the highest four and lowest four market

returns are omitted, the betas of 7 portfolios (out of 20) change by more than 3 standard errors. When the

highest four observations are deleted, the betas of 9 portfolios change by more than one standard error,

confirming the results for individual stocks.

These results indicate beta’s great sensitivity to extreme market fluctuations, which casts doubts on

the robustness of the CAPM as it varies with respect to the choice of the sample period and the specification

of the model.  This sensitivity exists for both upward and downward movements of the market. Sensitivity

to extreme downturn market fluctuations can be justified by arguing extreme cases of risk aversion, but it is

not easy to explain sensitivity to extreme upward market movement.

The aim of this paper is to explore those factors that contribute to the sensitivity of beta estimates to

extreme observations of market returns and to suggest alternative estimators that are both robust and  better

represent investors' risk aversion.  In particular, the analysis shows that all models that represent the investor

as an expected utility maximizer characterize systematic risk by a covariance formula between the marginal

utility of wealth and the asset's return.  The differences among the various models have to do with the exact

specification of the marginal utility of wealth.  Since this covariance cannot be observed, valuation models

identify risk by a specific measure of variability, like the variance or the semivariance, and for the latent

covariance substitute a covariance between the market portfolio and an asset's return. On the other hand, it

is shown that the regression technique used to estimate systematic risk implicitly specifies the functional form

of the marginal utility of income, and thus determines the implied risk aversion.    
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The paper is organized as follows. Section 2  presents the OLS estimator for beta as a weighted

average of the change in asset return conditional on the change in market returns.  The weights used in

averaging depend solely on the distribution of market returns.  As the weights are sensitive to extreme market

fluctuations, the OLS estimation procedure attaches greater weights to extreme market changes, a

characteristic that may contradict financial theory.

In Section 3, we show how financial theory implies that systematic risk is expressed by a covariance

formula between the marginal utility of wealth and asset return.  Provided that the utility function is known,

this covariance defines the ideal beta, that is the beta that would be most suitable for reflecting the riskiness

of the asset.  Having defined the ideal beta enables us to compare alternative estimators of beta with the ideal

beta. This comparison reveals that while it may be justified to attach greater weights to extreme downturn

realizations of the market, it contradicts financial theory to attach greater weights to upward movements of

the market.  The property of attaching heavy weights to extreme positive high returns on the market portfolio

challenges financial theory and simultaneously decreases the robustness of the estimator of beta.     

In Section 4, we offer alternative estimators for describing the riskiness of an asset such as the

extended Gini estimators, and investigate their properties.  These estimators attach lower weights than the OLS

estimators to upward market movements, thus making the estimator both more appropriate from the theoretical

point of view, and at the same time more robust than the OLS estimator. Section 5 concludes the paper
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Rk � αk � βk M � εk , (1)

βOLS �

cov (Rk , M )
cov (M , M )

. (2)

2. The OLS  estimator for beta

We introduce the OLS estimator of beta as a weighted average of the slopes of the lines delineated by two

adjacent observations along the Security Characteristic Curve, (defined later).  This enables us to show that

OLS attaches too much weight to extreme observations of market return in the sample.

We consider a  market model where security returns are continuously random and have a joint density

function  f(Rk,M), where Rk is the return on asset k and M is the market portfolio.  Let  fM, FM, µM, and  σ2
M

denote the marginal density, the marginal cumulative distribution, the expected value and the variance of M.

We assume the existence of the first and second moments and define    Rk(m) = E(Rk*M = m)   as the

conditional  expected return on asset k  given  the portfolio's return M = m.   Rk(m) is known as the security

characteristic line ( Sharpe, 1981 ), but here we refer to it as the Security Characteristic Curve since we do

not assume a specific curvature. 

In order to estimate the beta of the asset, it is usually assumed that the following relationship holds:

with the usual assumption that εk's are i.i.d. random variables with zero expected value and constant variance.

The OLS estimator is then:  

where the index k is omitted.4    Theorem 1 presents the OLS estimator of βOLS as the weighted average of the

slopes of the Security Characteristic Curve. 
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βOLS � m
M

w (m )δk (m )dm, (3)

w (m ) �
1

σ2
M

[µM FM (m ) � m
m

�4

t fM ( t )dt]

�

FM (m )

σ2
M

[ µM � E ( M |M # m ) ] .

(4)

Theorem 1: Let E*(Rk|M) = α + β M represent the best linear predictor of Rk, given M , and let δk(m) represent

the derivative of the Security Characteristic Curve Rk(m) with respect to m.  That

is,  is the slope of the  Security Characteristic Curve of securityδk (m ) � Rk'(m) � ME [ Rk | M � m ] / Mm ,

k when the market return equals m.  Then βOLS is the weighted average of the slopes of the regression curve:

where  w(m) > 0,  I w(m)dm = 1 and the weights for OLS are given as:

Proof: See Yitzhaki (1996). 

Theorem 1 presents the OLS estimator of β as a weighted average of the changes in the asset expected

return conditional on the changes in the market return.  The sum of weights is equal to one and is normalized

by the variance of the market return. This means that the weighting scheme is actually the relative contribution

of each segment of market return to the variance of market return.  The second part of Equation (4) reveals

that this contribution is based on the rank of the market return, FM(m), as well as to the expected contribution

to mean market return of all the returns that are smaller than m.5 

To understand the properties of the weighting scheme, we assume a specific distribution for the

market return.  We consider, in particular, the uniform distribution and the normal distribution, the first

because of its simplicity, and the second because it is widely used to describe the distribution of market return.
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w (m ) �
6 (b � m ) (m � a )

(b � a )3
. (5)

w (m ) � �
1
2π m

m

�4

t e�t 2/2 dt �
1
2π

e�m 2/2 . (6)

A. The uniform distribution.  Let  M  be uniformly distributed between a and b.   By applying  Equation

(4), the weight attached to the slopes of the Security Characteristic Curve at m is:

This weighting scheme attaches the maximum weight to the midpoint of the market return.  It is symmetric

around the midpoint.  Also, the farther the actual return is from the expected return, the lower is the weight.

B. The normal distribution.  Let  M  be a standard normally distributed variate. Then

The weight is identical to the density of the normal distribution. Hence, equal percentiles of the distribution

receive equal weights. 

These examples reveal that the OLS weighting scheme is determined solely by the distribution of the

market return and  is sensitive to the shape of the distribution.  For a flat density function, such as the

uniform distribution, the OLS estimator attaches greater weights to observations that are near the mean of

the distribution.  When the distribution is normal, an equal number of observations receive exactly the same

weight. 

Empirical evidence on the distribution of the market rate of return by Fama (1965) and by Mantegna

and Stanley (1995) indicates fatter tails than expected from a normal distribution. Hence, the weighting

scheme of the normal distribution is not a good approximation of the actual weighting scheme in a typical

estimation of β. Therefore, instead of identifying the distribution type and evaluating the weighting scheme

for given theoretical distributions, it is useful to establish the weights directly from the sample as follows.

Let us consider a sample of  n  observations of stock return  ri (i = 1, ..., n)  and  market return  mi.

 We arrange the observations by ranking them in ascending order of market return.  We define 

∆i = mi+1 – mi > 0 as the difference in stock returns, and  (i = 1, ..., n – 1)  as the slope ofbi �
ri�1 � ri

m i�1 � mi

the line joining two adjacent observations. 6 
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bOLS � j
n�1

i�1
wi bi (7)

wi �

∆i { j
n�1

j� i
i ( n� j ) ∆j � j

i�1

j�1
j ( n� i ) ∆j }

j
n�1

k�1
∆k { j

n�1

j�k
k ( n� j ) ∆j � j

k�1

j�1
j ( n�k ) ∆j }

. (8)

Theorem 2 : Within the sample, the OLS estimator of systematic risk  β  is the weighted average of slopes

delineated by adjacent observations.  That is,

where  wi > 0, Σwi = 1 .

The weights are given by

Proof: See Yitzhaki (1996).

The components of Equation (7) are the slopes  bi  and the weights  wi  that depend solely on the

distribution of the independent variable, i.e., the market return.  The contribution of each observation to the

estimator of β consists of (i) the effect of the weighting scheme and (ii) the slope of the line joining two

adjacent observations on the empirical Security Characteristic Curve. Adding up the weights of a range of

market returns yields the contribution of that range of the distribution of the market return to the estimate

of β. 

    Equation (8) reveals that the weights  wi  depend on both the rank of the observation of market return

and its distance from the adjacent observation, as defined by ∆i.  The weight increases as the rank of the

observation draws closer to the median and as the distance between observations increases.  That is: (i) the

OLS weighting scheme attaches more weight to observations that are closer to the median of the market

return, and (ii) the weight is an increasing (quadratic) function of the distance between adjacent market

observations.

Under the uniform distribution, the distances between observations are equal, hence the only factor

determining the weight is the difference between the rank of the market return from the median of the

distribution.  Yet, if the distribution is normal, the farther the observation is from the median the greater will
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Sn �
10

n σ2
M

j
i 0 Dn

[ mi � E ( m )]2
(9)

be the distance between observations.  The result is that these two factors offset each other, leading to a

weighting scheme that attaches equal weights to an equal number of observations.

If the distribution has fatter tails than those of a normal distribution, the distances between adjacent

observations increase at a faster rate (than the normal distribution rate) as one moves away from the center.

In this case, the weighting scheme assigns greater weights the farther the observation is from the median.

This property causes the OLS to be sensitive to extreme observations. 

Table 2 presents the weighting scheme for our sample together with some additional statistics.  The

S&P 500  returns are aggregated into 10 groups, each with ten percent of the observations (deciles), from the

lowest ( Decile # 1) to the highest (Decile # 10).  In other words, the returns on the S&P 500 Index are ranked

from a "bear" market to a "bull" market during the sample period.  The entries in Table 2 serve to shed some

light on the effect of the state of the market on beta. 

The lowest observation in the sample is a daily return of minus 20 percent, and the largest one is a

return of plus 9 percent, so that the range of the market return in the sample period is around 30 percentage

points.

The first column in Table 2 reports the number of observations in each decile.  The second column

reports the percentage of the range of the market return used by each decile.  The wider the range of the

deciles the lower the density function at that segment of the range.  The first decile covers 66 percent of the

range while the highest decile covers 27 percent.  This implies that the sample distribution has fat tails in that

20 percent of the observations cover 93 percent of the range.  Also, there are more extreme observations at

the lower tail than at the upper tail. 

The third column presents the contribution of each decile to the variance of the S&P 500 return.

Formally:  

where Sn is the contribution of the nth decile to the variance, and  Dn represents the nth decile.  That is, the

contribution of each observation to the variance is aggregated for each decile to obtain the contribution of

the decile to the variance of the market.7  The contribution of the lowest decile to the variance is 50 percent,
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while the highest decile contributes 32 percent. Taken together, both deciles contribute 82 percent to the

variance of the S&P 500 return.

The fifth column shows the contribution of each decile to the OLS weighting scheme, according to

Equation (8).  The slopes of the Security Characteristic Curve are multiplied by this weighting scheme to

obtain the betas for the individual firms.  The first decile is assigned 34 percent of the weight, while the

upper decile is assigned 16 percent.  Taken together, the first and the last decile are responsible for fifty

percent of the weights.  If the S&P 500 Index return were to be normally distributed, we should find the

weight attached to the two extreme deciles to be 20 percent; If the distribution were to be uniform, then the

weight attached to the two extreme deciles should be less than 6 percent. The conclusion is that the fat tails

are responsible for the instability of the OLS estimator of systematic risk.

The remaining entries for the column show that, excluding the extreme deciles, the distribution is

symmetric around the fifth and six deciles.  Indeed, the weight attached to the fifth decile is identical to the

weight attached to the sixth decile; the weights attached to the fourth and seventh deciles are almost identical

and so on.  (The last two columns present the weights used for the alternative estimators discussed in Section

3). 

Table 2 reveals that one factor contributing to the instability of betas lies in the larger weight

allocated to extreme observations.  The OLS attaches 50 percent of the weight to 20 percent of the

observations. The evidence that a relatively high number of DJIA stocks are sensitive to the exclusion of

some observations hints that the Security Characteristic Curve may be non-linear, although this issue is

beyond the scope of the current paper since CAPM does not require linearity of the Security Characteristic

Curve.  As is argued in the next section, portfolio theory and CAPM do not require linearity of the market

line nor the use of a regression model to compute beta.8  Indeed, under the original CAPM, beta is an ex-ante

measure of risk.  The use of regression analysis to estimate beta confuses the issue because one has to assume

error terms that are uncorrelated with the market portfolio. (Sharpe, 1991). 

For our purposes, we distinguish between sensitivity to the upper tail ( a "bull" market) and the lower

tail (a "bear" market) of the distribution.  The greater weight attached to the lower tail of the market

distribution can be explained by high levels of risk aversion.  Indeed, a risk-averse investor attaches greater
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weight to the lower tail of the distribution.  Therefore, the higher the risk aversion, the greater the weight that

should be attached to the lower portion of the distribution.  In the extreme case of a max-min investor, all

the weight is attached to the lowest two observations of the market, in order to determine the contribution

of the asset to the riskiness of the portfolio (Shalit and Yitzhaki, 1984).

While risk aversion can justify the greater weight assigned to the lower tail, it is not at all clear what

would justify the large weight attached to the higher decile of the distribution.  On the contrary, risk aversion

would indicate that weights be reduced in the face of a bull market. Furthermore, in the extreme case of risk

neutrality, the weights should not exceed the weight that is attached when calculating the mean of the

distribution. Hence it seems difficult to reconcile the quadratic weighting scheme implied by OLS with a

weight that increases with market returns on the one hand and with risk aversion on the other.

In some sense the number of observations is misleading.  Although we have a sample of 2528

observations, only 20 percent of these are actually responsible for 50 percent of the coefficient.  Because the

weights are not evenly distributed in each decile, the effect is that we obtain the sensitivity of beta via the

extreme observations. 

The issue of the weighting scheme pervades other statistics of the regression such as mis-

specification tests and tests based on the error term distribution.  Since mis-specification tests rely on the

same weighting scheme, there is no guarantee that such tests do not rely on estimators that stress the non-

relevant portions of the distribution.  Testing for undue influence may therefore be helpful.  The effect of

an observation takes two forms: (i) its weight and (ii) the deviation of its slope (defined with adjacent

observations) from the average slope.  If only observations with low weights deviate from the average slope,

the influence of each observation may be minor, either because of the low weight or because of the small

deviation of the slope.

We now  analyze the implication of economic theory on the estimation procedure of systematic risk.
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3. Systematic risk 

Although beta lost some of its glitter as a result of some empirical tests (e.g., Fama and French (1992)), it

still maintains its theoretical appeal as a measure of risk.  To stress the importance of systematic risk in

financial theory, we argue that only two parameters, the expected return and the systematic risk, are sufficient

in order to capture the entire effect of the distribution of the asset's rate of return on the expected utility of

the investor. Systematic risk is expressed as the covariance between  asset return and the marginal utility of

wealth. However, the marginal utility of wealth is implicitly assumed. It is the estimation procedure of

systematic risk that dictates the implied expected marginal utility of wealth.  OLS  implies a quadratic utility

which means that the marginal utility of wealth is a linear function of wealth.  This assumption of linearity

is responsible for the sensitivity of beta to fat tails.     

The CAPM relating beta to expected return was originally derived by assuming mean-variance

efficiency of portfolios.9  Afterward, following the Rothschild and Stiglitz (1970) increasing risk model,

Merton (1982, 1990) proved the CAPM relationship for all risk-averse investors by postulating efficient

portfolios, in the sense that investors maximize expected utility.  Portfolio efficiency, whether in mean-

variance or expected utility, is the condition necessary to derive CAPMs.  As Roll (1977) noted however,

market efficiency is itself the stipulation that prevents a valid test of asset pricing theory.

We alleviate this problem by showing how the expected utility or disutility produced by a small

change in the holdings of one asset in the portfolio can be captured in terms of expected return and

systematic risk.  This result is valid for all expected utility maximizers, and hence depends neither upon  the

quadraticity of preferences nor the distribution of returns.

We do not assume that investors actually succeed in maximizing expected utility, thus departing from

Merton (1982, 1990).  Although the intended goal is to maximize expected utility, it may not be achieved

because of transaction costs, a lack of perfect information, constant changing environments, or other
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Max E [ U ( M ) ]
α1,...,αN

s.t. M � M0 [ y � '
n

i�1
αi Ri ]

j
n

1�1
αi � 1 and M0 / 1 ,

(10)

M E [ U ( M ) ]
M αk

� E [ U �( M ) Rk ] � λ , (11)

M E [ U ( M ) ]
M αk

� E [ U � ( M ) ] µk � cov [ U � ( M ) , Rk ] � λ . (12)

commitments. Hence, the definition of systematic risk does not depend on whether investors are able to

maximize the expected utility since it is sufficient to assume that they intend to do so. 

 Consider an expected utility maximizing investor who holds a mixed portfolio of risky and safe

assets.  The investor's goal is represented by the maximization problem:

where E[U(M)] is expected utility;  U is a continuous, monotonically increasing concave  function, M0 is a

given initial wealth assumed to be 1 without loss of generality; αi and Ri are, respectively, the share of M

invested in asset i and the returns on asset i; and  y is the return on some other income, either deterministic

or stochastic that can be attributed to labor or human capital.  

The investor holds a given portfolio { α0 }, whose shares are α0
i, i = 1, ..., n.  Note that the only

requirement on  α0 is that it is held by the investor. Assume the investor wants to change the holdings of asset

k in the portfolio.  The effect of increasing αo
k on expected utility is given by:

where λ is the Lagrange multiplier associated with the portfolio constraint.  By adding and subtracting

E[U'(M)]µk, where µk is the expected return on asset k, we can rewrite Equation (2) as:

Our purpose here is to compare between assets. Hence, all factors that are equal for all assets can

be ignored.  Equation (12) expresses the effect of a marginal increase in asset k on expected utility as a

function of the expected return on asset k, and the asset's systematic risk, defined as the covariance between

marginal utility of wealth and the return on asset k. 
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ACC M
k ( p ) � m

m

�4

Rk ( t ) fM ( t ) dt $ 0 for all m, where p � m
m

�4

fM ( t ) dt , (13)

Assuming a specific utility function enables us to obtain an explicit expression for systematic risk.

For example, a quadratic utility function defined on wealth leads to the conventional beta.  Formally, let us

denote U(M)= A + B M + 0.5 C M2 ; then  Cov [ U'(M) , Rk ] = βk σ2
M, where βk =βOLS =

Cov(Rk,M)/cov(M,M) is the OLS regression coefficient of Rk on M.  If the utility function is defined in terms

of the rate of return on the portfolio rather than the level of wealth, the standard expression for systematic

risk is produced. 

If investors identify risk with another index of variability, such as the semivariance or the Gini's

Mean Difference (GMD), alternative expressions for beta may be obtained (Shalit and Yitzhaki (1984)).  In

the case of GMD, βk = cov[Rk,F(M)]/cov[M, F(M)] where F(M) is the cumulative probability  distribution

of investors' wealth. The implied utility function in this case can be traced to a special case of Yaari's (1987)

dual approach to risk aversion.  

An alternative to the assumption, explicit or implicit, of a specific utility function is to consider a

set of utility functions that comply with second degree stochastic dominance (SSD), where the set of eligible

functions is composed of all utility functions with U'() > 0 and U''() < 0. 10  Then one can summarize the

effect of an increase in the share of an asset on all possible legitimate utility functions by a curve instead of

a single parameter as in the case of specific utilities. 

Under SSD, the effect of increasing α0
k on expected utility is captured by the following Theorem:

Theorem 3:  A necessary and sufficient condition for a small increase in asset k to increase expected

utility for all functions with U' > 0 and U''< 0 given portfolio M is  

where ACC stands for the absolute concentration curve and Rk() is the conditional expected return on asset

k given a portfolio return.
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ACC m
k (p) �p @ µk � m

m

�4

[ µk�Rk( t ) ] fM( t ) dt $ 0 for all m , where p � m
m

�4

fM( t ) dt . (14)

m
1

0

ACC M
k ( p ) dp � m

1

0

µk p dp � m
1

0
m
m

�4

[µk � Rk ( t ) ] fM ( t ) dt dF(m) , (15)

m
1

0

ACC M
k ( p ) dp � 1/2 µk � cov [ Rk , FM ( M ) ] $ 0 . (16)

µk � ΓM βk $ 0 (17)

βk �

cov (Rk , FM )
cov (M , FM ) (18)

Proof:  See Shalit and Yitzhaki (1994), where the theorem is proved for an increase in the share of one asset

subject to a decrease in the share of another asset. 

The ACC of asset k sums up the conditional expected returns on asset k, each weighted by the

probability of the portfolio M = m. The probability  p  is that the portfolio return is at most m. Hence for a

given probability p, the ACC is the cumulative expected return on asset k, subject to a portfolio return of, at

most, m.

By adding and subtracting  pµk  one can derive the necessary conditions of Theorem 3 in terms of

expected return and beta as follows:

Since Equation (14) holds for all p, it implies that:

which is written as 

Dividing and multiplying the covariance term by one-half of the GMD of the portfolio produces the beta of

asset k obtained using the Gini as a measure of risk. 11   Hence, a necessary condition for a small increase in

asset k to increase expected utility for all risk-averse investors given that they hold portfolio α0 is that: 

where

The conclusion drawn in this section is that for all expected utility models, the effect of an increase

in the holding of an asset on expected utility can be broken down into the effects of the expected return and



17

the systematic risk (beta) of the asset.  The systematic risk is the covariance between the marginal utility of

wealth in the appropriate portfolio and the return on the asset.  This covariance, normalized by an appropriate

measure of variability, is also the regression coefficient of the asset return on the portfolio's return.  Thus,

the choice of the regression technique is also the choice of marginal utility of the wealth function, and thus

of risk aversion.

Without restricting the set of distributions, the OLS regression method implies a quadratic utility

function that is sensitive to extreme observations. Thus OLS  may be inappropriate as it could imply negative

marginal utility of wealth for extreme observations. Indeed financial theory under risk aversion assumes a

declining marginal utility of wealth.  Furthermore, the higher the degree of risk aversion, the faster marginal

utility declines with wealth.  This implies that risk-averse investors attribute less weights for variability when

market returns are high than when market returns are low.  On the other hand, as seen from Equation (4),

since the OLS weighting scheme is symmetric with respect to the median of market returns, OLS will be

incompatible with risk aversion and declining marginal utility of wealth.  

The bottom line of our argument is that investors’ risk aversion as it appears  in CAPM must be the

same risk aversion used when estimating systematic risk. In the next section, we propose an alternative

estimation method of the market line that will be both more robust than the OLS, and will at the same time

better reflect the risk aversion of the investors.   
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4. Alternative estimators for beta

Theorems 1 and 2 provide a formal explanation for the well-known observation that OLS estimators

are sensitive to outliers.  A common solution to this problem is to remove extreme observations from the

sample.  The inconsistency in this procedure is inherent.  On the one hand, outliers receive extremely high

weights. On the other hand, when they appear to have a strong effect on the estimate, they are arbitrarily

deleted from the sample along with the relevant information they carry. 

The OLS estimator can be interpreted as a weighted average of slopes.  As we obviously do not want

to change the slopes, the solution must rely on changing the weighting scheme and making it compatible with

risk averse behavior.  The weighting scheme depends upon (i) the rank of each observation and (ii) the

difference (in terms of the independent variable) between each observation and the one adjacent.  In OLS this

difference is raised to the second power, thus exacerbating its effect.12 

An alternative strategy is one that yields a weighting scheme that is consistent with one's perception

of risk aversion.  Therefore, one should use indices of variability that are less sensitive to extreme high rates

of market return and that imply regression slope estimators with low weights to extreme high observations.

Such properties exist in the Gini estimators. 

 As far as we know ,  Gini’s statistics were first applied as measures of dispersion in financial data

by Fisher and Lorie (1970) who justify their use “. . . because many of the distributions . . . depart greatly

from normality. For such distributions, the standard deviation of even a large sample may not give a very

meaningful indication of the dispersion of the population. Gini’s mean difference and coefficient of

concentration are nonparametric measures and are invulnerable to this consequence of departure from

normality . . .  Gini’s mean difference differs from the mean deviation by giving greater weight to extreme

observations, thus taking care of a frequently made criticism of the mean deviation. “ (1970, p. 104)  

The extended Gini is a family of variability measures that was applied by Yitzhaki (1983) to develop

necessary conditions for stochastic dominance.  It was used by Shalit and Yitzhaki (1984) to develop the

Mean-Gini CAPM which is similar to MV-CAPM in its properties but, unlike MV, is consistent with expected

utility for any concave function or any probability distribution.  Even if one wants to rely on MV-CAPM as
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β (ν) �

cov (R , [ 1 � FM (M ) ] ν�1 )

cov ( M , [ 1 � FM (M ) ] ν�1 )
ν > 0 , ν … 1 (19)

β (ν ) � m V ( m , ν ) δ (m ) dm , (20)

V ( m , ν ) �

[ 1 � FM ( m ) ] � [ 1 � FM ( m ) ] ν

m
4

�4

{ [ 1 � FM ( t ) ] � [ 1 � FM ( t ) ] ν } dt

.
(21)

the theoretical basis for developing systematic risk, it may be helpful to use the beta Gini estimator as a

robust estimate of beta.13  That is to say , one can recommend the Gini beta on its own merits or as a robust

estimator for the MV beta.  

The extended Gini regression coefficient (EGRC) is a ratio based on the extended Gini variability

index.  The denominator denotes the market extended Gini index and the numerator the extended Gini

covariance of the stock return with the market return.14  EGRC is defined as: 15

where  ν is a parameter determined by the investigator to reflect the investigator's perception of risk aversion

in the market.16  If  ν  = 1 , the investigator assumes a risk-neutral market.  The higher the  ν  the more risk-

averse is the market.  In the extreme case ( ν = 4 ), the market concerns itself only with huge crashes (which

is exhibited by max-min behavior).  The range  0 # ν < 1  reflects risk-loving behavior with  ν 6 0  showing

a max-max strategy; i.e., the market considers only the day with the highest return as the decision statistic.

Another interpretation of ν is to view as a parameter in a specific set of utility functions belonging to the set

of utility functions that comply with Yaari's (1987) dual approach to decision under risk. 

 The weighting scheme of the estimator for β(ν) is determined by the parameter ν  and by the

distribution of the market return.  By determining  ν , the investigator introduces individual perception of risk

aversion into the estimation procedure.

Theorem 4:  The extended Gini estimators of the regression coefficient have the following properties:

(a) In the population the parameters are the weighted averages of the slopes of the Security

Characteristic Curve:

with  V(m,ν) > 0  and  I V(m,ν)dm = 1,  where
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b ( ν ) � j
n�1

i�1
Vi(ν) bi , (22)

Vi(ν) �

[ n ν�1 ( n � i ) � ( n � i )ν ]∆i

j
n�1

k�1
[ n ν�1 ( n � k ) � ( n � k )ν ] ∆k

.
(23)

(b) In the sample, all estimators are weighted averages of slopes defined by pairs of adjacent

observations:

where  bi =    ( i = 1, ..., n!1 );   Vi > 0,  ΣVi = 1,   and
ri�1 � ri

mi�1 � mi

(c) The estimators  b(ν) are ratios of U-statistics.  Hence, they are consistent estimators of  β(ν).  For

large samples, the distribution of the estimators converges to a normal distribution.  Furthermore ,for

integer ν, the estimators b(ν) are unbiased and have a minimum variance among all unbiased

estimators.

(d) Suppose that E(Y|X) = α + βX and Var(Y|X) = σ2 < 4. Then all extended Gini estimators are

consistent estimators of  β.

Proof: See Yitzhaki (1996) and Schechtman and Yitzhaki (1998). 

Properties (a) and (b) show that all EGRC(ν) are weighted averages of the slopes defined by adjacent

sample points.  The differences among the estimators are in the weighting schemes.  Property (d) of Theorem

4 enables the use of EGRC as an estimator for MV-beta.

To estimate EGRC it is not necessary to assume a linear relationship.  All that is required is to

assume a regression curve and an interest in estimating a weighted average of the curve slopes.  The weights
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w ( p ) � c ( ν ) [ ( 1 ! p ) ! ( 1 ! p )ν ], (24)

Mw
Mp

�

Mw [ FM ( m ) ] / Mm
MFM ( m ) / Mm

� c ( ν ) [ ν ( 1 � p )ν�1
� 1]

and M2 w
Mp 2

� c ( ν ) ν ( ν � 1 ) ( 1 � p )ν�2 .

are determined by two elements:  The first is the perception of risk aversion and the second is the statistical

property of the estimate that depends on the distribution of the market return.

For a given ν,  we can ignore the denominator as a normalizing factor and consider the numerator

as a function of the value  p = i/n  provided by the cumulative distribution:

where  c  is a function of  ν.  By looking at the derivatives of  w  with respect to the cumulative distribution

p,  we can trace the properties of the weighting scheme:

For  ν > 1, i.e., for a risk-averse investigator, the weighting scheme increases for low values of  p,

reaches a maximum, and then declines.  If  ν < 1, i.e.,  for a risk-loving investigator, the weighting scheme

increases with  p .17   

If  ν = 2,  the denominator of Equation (19) is one-half the GMD, while the numerator is the Gini

covariance.  The weighting scheme is symmetric in  p.  The closer the observation is to the median, the

greater is its weight.

The GMD weighting scheme is similar to the OLS weighting scheme, except that the OLS weighting

scheme uses quadratic distances between observations, while the GMD weighting scheme uses absolute

differences.  If the distance between observations of the market return is constant, such as in the uniform

distribution, the weighting scheme of  GMD is identical to that of OLS.  If the distribution of the market

return is normal, GMD attaches higher weights to the center of the distribution than OLS does.  That is, while

the OLS attaches equal weights to equal numbers of observations, the GMD attaches higher weights to the

middle of the distribution.  In general, since the denominator in Equation (19) is the extended Gini, it can

be shown that the GMD (and the extended Gini) weighting schemes attribute to each decile of the distribution

the contribution of that decile to the GMD (or the extended Gini).   
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The weighting scheme of the GMD beta is shown in the fifth column of Table 2.  It can be seen that

the GMD attaches only 15 percent of the weight to the lowest decile and 12 percent to the highest decile.

Thus, the use of the Gini reduces the weight attached to the two extreme deciles of the market return from

50 percent under OLS to 27 percent under  GMD.

The effect of changing ν  on the weighting scheme is more complex, since both the numerator and

the denominator are affected.  If  ν > 1, that is, if risk aversion is considered, higher weights are given to the

lower segments of the market distribution returns. 

The weighting scheme for each  ν  can be calculated numerically.  The last column of Table 2

presents the weighting scheme for ν = 5.  By raising  ν from 2 to 5, the weight assigned to the lowest decile

increases to 26 percent, while the weight assigned to the highest decile decreases  from 12 to 6 percent.  This

approach enables the investigator to control the weighting scheme and to adjust it to the market risk aversion.

Table 3 presents the sensitivity of beta derived under various approaches to the deletion of the top

four and the bottom four market return observations.  Since the standard error of each estimate is derived

under different assumptions, the estimates are not comparable.  Therefore, Table 3 reports the absolute

deviation of beta in each method in percentage points of the estimate.  The first four columns report the effect

of deleting the top four observations.  In this case, the βOLS of more than six firms (20 percent of the sample)

changes by more than 3 percentage points, but none of the Gini betas (with  ν = 2, 4, 6 ) change by this

magnitude.  The OLS betas of an additional eight firms change by more than 2 percent while only the GMD

betas of two stocks have changed by this magnitude.  As expected, the higher the ν the less sensitive is the

estimate of beta to the firm performance in extreme high market returns.  To illustrate, note that for ν = 6 all

betas have changed by less than 1 percent.

The second four columns report the sensitivity of the estimates when both the top and bottom four

observations are omitted.  Under OLS, the betas of more than eight firms change by more than 10 percent,

while the Gini betas in no case change by that magnitude.  It also can be seen that increasing ν increases the

sensitivity of beta because of the increase in the weight given to bottom observations. Nevertheless, the Gini

method continues to be more robust than OLS.  If one continues to increase ν, however, this property

disappears.
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  The extended Gini approach offers an infinite number of alternative estimators.  Two immediate

questions arise: should the Gini method be used as a substitute for OLS estimation and, if so which  ν  should

be chosen.  The answer is not clear-cut.  On the one hand, it depends on the degree of confidence one has

about the market's risk aversion and, on the other hand, on the curvature of the empirical Security

Characteristic Curve.   If the Security Characteristic Curve is linear, it does not matter which method is

used.  If the slopes of the curve differ, i. e., if the relationship between the firm and the market is not linear,

the method used is important.  In this sense, EGRC offers a  statistical test on whether incorporating the

parameter of  risk aversion in the estimation is important. As shown by Gregory-Allen and Shalit (1999)

statistically testing  the equality of various β(ν) is actually a test on the linearity of the regression curve, and

therefore can determine whether ν is significantly important. 

Ignoring risk aversion and assuming the validity of  MV, OLS is the most efficient estimator.  If the

model is linear, using a Gini-based estimator will result in loss of efficiency.  The larger the sample size

however the less important is the efficiency loss.

If the Security Characteristic Curve is not linear, and if the stock market exhibits great volatility,

OLS may lead to estimating wrong coefficients.  Hence MV-CAPM may fail, not because of wrong

assumptions but rather because of the estimation procedure.  Further research would be fruitful in this area.

The Gini method does not need to specify the curvature of the Security Characteristic Curve.  It

provides a weighted average of the slopes where the weights are determined by risk aversion (theory) and

statistical (curvature) considerations. 
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5. Further research and conclusion

The question remains as to how a Gini-based model can serve as a basis for testing CAPM.  This is a complex

issue because of the infinite number of risk aversion parameters ν.  Indeed one should ask what is the proper

ν to be used?  With MV, risk aversion differentiation among agents vanishes in market equilibrium because

of the separation theorem.  Differences in risk aversion among investors only materialize in the various

combinations of the riskless asset and the market portfolio.  This is not the case with MEG betas, where risk

aversion consideration appears in the estimation of systematic risk.  This issue was also studied by Levy

(1978) within MV.  By considering investors who hold portfolios of stocks whose number is smaller than the

number of stocks in the market, Levy shows that several MV betas for the same stock co-exist in equilibrium.

 In the same spirit, we posit that different betas generated from various risk aversion coefficients can

coexist in equilibrium in the same market.  The challenge would be to establish the theoretical foundations

for such a model.  In the meantime we are compelled to use a market equilibrium with a unique Gini beta

based on one coefficient of risk aversion, ν.  For that purpose, one approach is to estimate ν most likely held

by investors by comparing the mean-Gini efficient sets with the market portfolio, as Shalit and Yitzhaki

(1989) have done.

In all expected utility models, the systematic risk of an asset can be presented as a function of a

covariance between marginal utility of wealth and the return on the asset.  In estimating beta by OLS, the

marginal utility is represented by a linear function of the market return, implying that the utility function is

quadratic.  Together with the fat tails of the market distribution, this leads to an unwarranted sensitivity of

the beta and to contradiction of the assumption of positive marginal utility of wealth.  Further research is

needed to verify that the cross-section estimating CAPM will not yield negative marginal utility of wealth.

The GMD beta does not suffer from this problem and offers an alternative and robust estimation method of

systematic risk.
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1.  Recently followed by Mantegna and Stanley (1995), Mandelbrot (1963) and Fama (1965) supply
the early evidence that the distribution of stock returns is characterized by fat tails relative to a
normal distribution.  See also Chan and Lakonishok (1992) for an excellent survey of the
literature on non-robustness in estimating betas.   

2. See the results in Brown and Warner (1985) and Fama (1965) that daily returns depart from
normality more than monthly returns. 

3. The estimates for betas are presented in the Appendix.

4. The index k will be omitted throughout the paper to avoid confusion.

5. In the sample, the cumulative distribution FM(m) is estimated by the rank of m.

6. To simplify the presentation we assume without loss of generality that ∆i > 0.  Otherwise, we
would need to aggregate all observations with the same  market return  m , a procedure that
complicates the presentation without adding insight.

7. Note that the numerators of both Equations (9) and (8) present alternative decompositions of the
variance of the market return. However, while Equation (9) presents it the usual way by writing
the variance as squared deviations from the mean, Equation (8) presents it using the change in
market return, ∆i, instead of the market return, m.  

8. Roll's (1977) critique is mainly concerned with the linearity of the relationship between beta and
expected return, which is beyond the scope of this paper. 

9.  The CAPM was first derived by Sharpe (1964), Lintner (1965), and Mossin (1966).  Merton
(1972)  provides a rigorous mathematical analysis of the efficient frontier which also appears in
Roll's (1977) widely cited paper.

10.  For the definition of the SSD criterion see Hadar and Russell (1969) and Hanoch and Levy
(1969). See Levy (1992) for a thorough survey of the methodology.  

11.  The GMD of portfolio M is defined as ΓM = 2cov(M, FM).

12. The quadratic differences can be attributed to calculating the variance.

13. See Carroll, Thistle, and Wei (1992) for a discussion of the robustness properties of the beta Gini
estimator.

14. For simplicity of exposition only the parameters are presented. The estimators take the same
form as the parameters, except that sample statistics are used instead of population parameters,
and the empirical distribution is used instead of the cumulative distribution. See Schechtman and
Yitzhaki (1998) for an investigation of the large sample properties of the estimators in a multiple
regression framework; Olkin and Yitzhaki (1992) for an investigation of large sample properties
of the regression based on the GMD, and Yitzhaki (1991) for a derivation of the standard error of
the estimators.) 

15. This estimator can be interpreted within the framework of OLS regression as an instrumental
variable estimator with instrument [1-FM(M)]ν . This provides a solution in the presence of errors-
in-variables problems, Durbin (1954).  
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16. Two different questions arise when a measure of variability is used to represent risk.  The first is
how risk aversion is defined, and the second is how much expected return one is ready to
sacrifice in order to reduce exposure to risk.  The first question is answered by the choice of the
index of variability used (variance, semivariance, extended Gini), while the answer to the second
question depends on the curvature of the efficient frontier of risk (measured by the appropriate
index) as compared to expected return. 

17. The risk aversion implied by the extended Gini coefficient can be described by a specific case. 
Consider the utility function: U[µ, Γ(ν )] = µ - Γ(ν) where ν is equal to an integer and Γ(ν) is the
extended Gini coefficient.  Then it can be shown that  µ - Γ(ν) = E[ Min{M1, M2,...,Mν} ], where
Mi are i. i. d. variables [Yitzhaki (1983)].  That is, the investor maximizes the expected value of
the minimum of ν random draws from the market return.  Hence, when ν equals one the investor
does not care about risk; when ν converges to infinity the investor behaves as if the worst case
scenario will certainly occur. A max-max investor behaves as if the best realization is always
obtained.      



27

References

Amihud, Yakov, Bent J.  Christensen, and Haim Mendelson, “Further Evidence on the Risk-Return

Relationship.” Working paper, New York University (1992)

Brown, Stephen. J. and Jerold B.Warner,  “Using Daily Stock Returns.” Journal of Financial Economics 14,

3–31, (1985).

Carroll, Carolyn, Paul D. Thistle, and K. C. John Wei, “The Robustness of Risk-Return

Nonlinearities to the Normality Assumption.”  Journal of Financial and Quantitative

Analysis 27(3), 419-435, (1992).

Chan, Louis. K. C. and Josef Lakonishok, “Robust Measurement of Beta Risk.” Journal of Financial

and Quantitative Analysis 27, 265-282, (1992).

Durbin, J., “ Errors in Variables.” International Statistical Review 22, 23-32, (1954).

Fama, Eugene, “The Behavior of Stock Prices.” Journal of Business 38, 34-105, (1965).

Fama, Eugene. F. and Kenneth R. French,  “The Cross-Section of Expected Stock Returns.”  Journal

of Finance 47, 427-465, (1992).

Fama, Eugene. F. and Kenneth R. French, Common Risk Factors in the Returns on Stocks and Bonds.

Journal of Financial Economics 33: 3-56, (1993).

Fama, Eugene F. and Kenneth R. French, “Size and Book-to-Market Factors in Earnings and Returns.”

Journal of Finance 50, 131-155, (1995).

Fama, Eugene. F. and Kenneth R. French, “Industry Costs of Equity.” Journal of Financial Economics  44,

153-93, (1997).

Fama, Eugene F. and James D. MacBeth, “Risk, Return, and Equilibrium: Empirical Tests.” Journal of

Political Economy 81, 607-36, (1973).

Fisher, Lawrence and James  H. Lorie , “Some Studies of Variability of Returns on Investments in Common

Stocks.” Journal of Business 43, 99-134, (1970).

Gibbons, Michael R., “Multivariate Tests of Financial Models: A New Approach.” Journal of Financial

Economics 10, 3-27, (1982).



28

Gregory-Allen, Russell B. and Haim Shalit, “ The Estimation of Systematic Risk under Differentiated Risk

Aversion: A Mean-Extended Gini Approach.” Review of Quantitative Finance and Accounting  12

135-157, (1999).

Hadar, Josef and William R. Russell, “Rules for Ordering Uncertain Prospects.” American Economic Review

59,  25–34, (1969).

Hanoch, Giora and Haim Levy, “The Efficiency Analysis of Choices Involving Risk.” Review of Economic

Studies 36, 335–346, (1969).

Jagannathan, Ravi and Zhenyu Wang, “The Conditional CAPM and the Cross-Section of Expected

Returns.” Journal of Finance 51, 3-53, (1996).  

Kandel, Shmuel and Robert F. Stambaugh, “ Portfolio Inefficiency and the Cross-Section of Expected

Returns.” Journal of Finance 50, 157-184, (1995). 

Knez, P. J., and Ready, M. J. 1997. On the Robustness of Size and Book-to-Market in Cross-Sectional

Regressions. Journal of Finance 52 : 1355-82.

Levhari, David and Haim Levy, “The Capital Asset pricing Model and the Investment Horizon.” The Review

of Economics and Statistics 59, 92-104, (1977).

Levy, Haim, “Equilibrium in an Imperfect Market: A Constraint on the Number of Securities in the

Portfolio.” American Economic Review 68, 643-658, (1978).

Levy, Haim, “Stochastic Dominance and Expected Utility: Survey and Analysis.” Management Science 38,

555-593, (1992).

Levy, Haim, “Risk and Return: An Experimental Analysis.” International Economic Review 38 (1), 119-149,

(1997)

Levy, Haim and Gideon Schwarz, “Correlation and the Time Interval over which Variables are Measured.”.

Journal of Econometrics 76, 341-350, (1997).

Lintner, John, “The Valuation of Risk Assets and the Selection of Risky Investments in Stock

Portfolios and Capital Budgets.” Review of Economics and Statistics 47, 13-37, (1965).

MacKinlay, A. Craig and Matthew P. Richardson, “Using Generalized Methods of Moments to Test Mean-

Variance Efficiency.” Journal of Finance 46, 511-527, (1991).

Mandelbrot, Benoit,  “The Variation of Certain Speculative Prices.” Journal of Business 36, 394-

419, (1963).



29

Mantegna, Rosario N. and H. Eugene Stanley, ”Scaling Behaviour in the Dynamics of an Economic

Index.” Nature 376, 46-49, (1995).

Merton, Robert C., “An Analytic Derivation of the Efficient Portfolio Frontier.” Journal of Financial and

Quantitative Analysis 7, 1851-1872, (1972).

Merton, Robert C.  “On the Microeconomic Theory of Investment under Uncertainty.” Handbook of

Mathematical Economics, Vol II, Arrow, K. J., and Intrilligator, M. D. Eds. Amsterdam: North-

Holland, (1982).

Merton, Robert C., Continuous Finance. Cambridge, UK: Blackwell, (1990).

Mossin, Jan, “Equilibrium in a Capital Market.” Econometrica 34, 768-783, (1966).

Olkin, Ingram and Shlomo Yitzhaki, “ Gini Regression Analysis.” International Statistical Review

60, 185-196, (1992).

Roll, Richard, ”A Critique of the Asset Pricing Theory's Test: Part I, On Past and Potential Testability of the

Theory.” Journal of Financial Economics 4, 129-176 (.1977).

Rothschild, Michael and Joseph E. Stiglitz, “ Increasing Risk I: A Definition.” Journal of Economic Theory

3, 66-84, (1970).

Schechtman, Edna and Shlomo Yitzhaki,” Asymmetric Gini Regression. Working Paper, Hebrew University

of Jerusalem, Department of Economics.(1998). 

Shalit, Haim and Shlomo Yitzhaki, “Mean-Gini, Portfolio Theory and the Pricing of Risky Assets.” Journal

of Finance 39(5), 1449-1468, (1984).

Shalit, Haim and Shlomo Yitzhaki, “Evaluating the Mean-Gini Approach to Portfolio Selection.”

International Journal of Finance 1(2), 15-31, (1989).

Shalit, Haim and Shlomo Yitzhaki, “Marginal Conditional Stochastic Dominance.” Management

Science 40,  670-674,(1994).

Shanken, Jay, “On the Estimation of Beta-Pricing Models.” Review of Financial Studies 5 , 1-33, (1992).

Sharpe, William F., “ Capital Asset Prices: a Theory of Market Equilibrium under Conditions of Risk.”

Journal of Finance 19, 425-442, (1964).

Sharpe, William F.,  Investments, Second Edition. Englewood Cliffs, NJ: Prentice Hall, (1981).

Sharpe, William F., “Capital Asset Prices with and without Negative Holdings.” Journal of Finance

46,  489-509, (1991).



30

Stambaugh, Robert F., “On the Exclusion of Assets from Tests of the Two-Parameter Model: A Sensitivity

Analysis.” Journal of Financial Economics 10,  237-268, (1982).

Yaari, Menahem. E., “The Dual Theory of Choice Under Risk.” Econometrica 55, 95-115, (1987).

Yitzhaki, Shlomo, " Stochastic Dominance, Mean-variance, and Gini's Mean Difference." American

Economic Review 72(1), 178-185, (1982).

Yitzhaki, Shlomo, “On an Extension of the Gini Inequality Index.” International Economic Review 24,

617-628, (1983). 

Yitzhaki, Shlomo, “Calculating Jackknife Variance Estimators for Parameters of the Gini Method.”

Journal of Business and Economic Statistics 9,  235-39 (1991).

Yitzhaki, Shlomo, “On Using Linear Regression in Welfare Economics.” Journal of Business and Economic

Statistics 14, 478-486,     (1996) .



31

Table 1a: Number of DJIA 30 firms whose betas change according to magnitude of change 

Magnitude of Change in β in Terms of

  Standard Error of the Estimate  

Omitting 4 highest

returns

Omitting 4 highest

& 4 lowest returns

Total Number of Firms           30           30

Less than 1 Standard Error           21             7

More than 1 and Less than 2 Standard Errors             8             4

More than 2 and Less than 3 Standard Errors             1             8

More than 3 and Less than 4 Standard Errors             0             5

More than 4 Standard Errors             0             7

Table 1b: Number of portfolios whose betas change according to magnitude of change* 

Magnitude of Change in β in Terms of

  Standard Error of the Estimate  

Omitting 4 highest

returns

Omitting 4 highest

& 4 lowest returns

Total Number of Portfolios           20           20

Less than 1 Standard Error           11             6

More than 1 and Less than 2 Standard Errors             9             6

More than 2 and Less than 4 Standard Errors             0             7

More than 4 Standard Errors             0             1

* Twenty portfolios, each composed of 5 firms are built by ranking the largest 100 traded firms according

to their betas.  Detailed results are given in Table A2. 
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Table 2: The OLS and GMD weighting schemes 

Decile Number of

 Observations

Percent of

 Range

Percent of

 Variance

OLS

 Weights

GMD

 Weights

 GMD(ν)

 Weights

1 253 66.1 50.3 34.1 15.0 26.4

2 253 1.3 5.6 7.9 9.9 14.7

3 253 0.8 2.0 6.4 9.2 11.8

4 253 0.6 0.6 5.3 8.4 9.1

5 253 0.5 0.1 4.9 8.0 7.5

6 253 0.5 0.1 4.9 7.9 6.5

7 253 0.6 0.6 5.6 8.8 6.2

8 253 0.9 2.1 6.8 9.9 6.1

9 253 1.4 6.4 8.3 10.6 5.8

10 252 27.1 32.2 15.7 12.2 6.0

Total 2529 100.0 100.0 100.0 100.0 100.0
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Table3: Percentage deviation of beta OLS and beta Gini

βOLS βν=2 βν=4 βν=6 βOLS βν=2 βν=4 βν=6

Number of Omitted Data 4 4 4 4 8 8 8 8

More than 10% Deviation 0 0 0 0 8 0 0 0

5 to 10 % Deviation 2 0 0 0 10 0 0 1

3.0 to 5.0 % Deviation 4 0 0 0 3 2 1 0

2.0 to 3.0 8 2 0 0 2 4 5 8

1.0 to 2.0 9 7 3 0 3 10 11 12

Less than 1.0 7 21 27 30 4 14 13 9

Total 30 30 30 30 30 30 30 30

Maximum Deviation 7.7 2.3 1.2 1.0 12.7 3.1 2.4 2.5

Minimum Deviation -4.2 -1.5 -0.8 -0.6 -15.2 -4.0 -4.8 -5.7
 



34

APPENDIX  TABLE A1
   (I)   (II)   (III)
Firm Beta for Beta w/o 4 Beta w/o 8 (I)-(II) (I)-(III)

all data  top data data /std err / std err

ALLIED SIGNAL 1.0503 1.0287 0.8909 0.7142 5.2819
(.030) (.029) (.033)

AMERICAN EXPRESS 1.3902 1.3792 1.3843 0.3528 0.1879
(.031) (.032) (.037)

A T & T 1.0600 1.0585 1.0665 0.0641 -0.2766
(.023) (.024) (.027)

BANKAMERICA 1.1381 1.1124 1.0490 0.6372 2.2085
(.040) (.041) (.047)

CATERPILLAR 0.9912 1.0038 0.9817 -0.4118 0.3115
(.030) (.031) (.035)

CHEVRON 0.8362 0.8598 0.8339 -0.9413 0.0906
(.025) (.026) (.029)

COCA-COLA 1.2159 1.1851 1.1823 1.3753 1.4983
(.022) (.022) (.026)

DEERE 0.9127 0.9293 0.9278 -0.5025 -0.4555
(.033) (.034) (.038)

DISNEY 1.1811 1.1528 1.0938 0.9389 2.8916
(.030) 0.0309 0.0351

DOW CHEMICAL 1.0828 1.0994 1.0999 -0.6600 -0.6807
(.025) (.026) (.029)

DU PONT 1.0101 1.0400 1.0731 -1.3735 -2.8881
(.022) (.022) (.025)

KODAK 1.0841 1.0510 0.9529 1.1807 4.6814
(.028) (.028) (.031)

EXXON 0.9451 0.9221 0.8680 1.0975 3.6807
(.021) (.021) (.024)

GE 1.1569 1.1595 1.2324 -0.1428 -4.1507
(.018) (.019) (.021)

GM 1.0557 1.0661 1.0958 -0.3834 -1.4772
(.027) (.028) (.031)

GOODYEAR 1.0246 1.0053 0.9129 0.5781 3.3347
(.034) (.034) (.039)

IBM 0.9478 0.9535 0.9207 -0.2458 1.1885
(.023) (.023) (.027)

INT'L PAPER 1.0966 1.1137 1.0435 -0.6685 2.0753
(.026) (.026) (.029)

J & J 1.0894 1.1059 1.1555 -0.6804 -2.7193
(.024) (.025) (.028)

MCDONALDS 1.0039 0.9956 1.0343 0.3434 -1.2695
(.024) (.025) (.028)

MERCK 0.9263 0.9419 1.0263 -0.6752 -4.3308
(.023) (.023) (.027)

MMM 1.0127 1.0223 0.9599 -0.5084 2.8060
(.019) (.019) (.022)

MOBIL 0.9262 0.8874 0.8170 1.5448 4.3431
(.025) (.026) (.029)

JP MORGAN 1.1958 1.1581 1.0789 1.3914 4.3172
(.027) (.026) (.030)

PHILIP MORRIS 0.9850 0.9965 1.0738 -0.4706 -3.6300
(.024) (.025) (.028)

PROCTER & GAMBLE 1.0508 1.0278 0.9900 1.0518 2.7725
(.022) (.021) (.024)

SEARS 1.1535 1.1383 1.1324 0.5524 0.7697
(.027) (.028) (.032)

UNION CARBIDE 0.8995 0.9295 1.0091 -0.8195 -2.9952
(0.037) (0.036) (0.041)

UNITED TECH 0.8385 0.9028 0.9448 -2.3928 -3.9564
(.027) (.027) (.031)

WOOLWORTH 0.9460 0.9951 1.0494 -1.5971 -3.3616
(.031) (.031) (.036)
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APPENDIX  TABLE A2
 (I) (II) (III)           

Portfolio          Beta for                    Beta w/o 4                   Beta w/o 8           (I)-(II)           (I)-III)
Number             all data                  highest  data                    data               over std err       over std err 

1                  0.4607                       0.4598                       0.4698              0.06000            -0.59761
                    (.015)                        (.016)                        (.018)
2                  0.5672                       0.5639                       0.5755              0.28295            -0.70939
                    (.012)                        (.012)                        (.014)
3                  0.6325                       0.6327                       0.6366              -0.01948           -0.32324
                    (.013)                        (.013)                        (.015)
4                  0.7208                       0.7072                       0.6785              1.13498            3.52226
                    (.012)                        (.012)                        (.014)
5                  0.8269                       0.8460                       0.8080              -1.30485           1.28871
                    (.015)                        (.015)                        (.017)
6                  0.8776                       0.8825                       0.8910              -0.35783           -0.97399
                    (.014)                        (.014)                        (.016)
7                  0.9135                       0.9391                       0.9649              -1.56990           -3.15718
                    (.016)                        (.016)                        (.018)
8                  0.9365                       0.9336                       0.9348              0.22552            0.13190
                    (.013)                        (.013)                        (.015)
9                  0.9565                       0.9564                       0.9265              -0.06964           2.55339
                    (.011)                        (.011)                        (.013)
10                 0.9807                       1.0005                       0.9703              -1.16677           0.61295
                    (.017)                        (.017)                        (.019)
11                 1.0073                       1.0226                       1.0240              -1.30895           -1.42779
                    (.012)                        (.012)                        (.013)
12                 1.0423                       1.0333                       0.9936              0.69029            3.74751
                    (.013)                        (.013)                        (.014)
13                 1.0684                       1.0672                       1.0406              0.10475            2.35012
                    (.012)                        (.012)                        (.013)
14                 1.0893                       1.1145                       1.1143              -1.49423           -1.48475
                    (.017)                        (.017)                        (.020)
15                 1.1053                       1.1189                       1.1313              -0.99743           -1.90759
                    (.013)                        (.014)                        (.016)
16                 1.1257                       1.1194                       1.0619              0.37876            3.81387
                    (.017)                        (.017)                        (.019)
17                 1.1548                       1.1520                       1.1274              0.12952            1.24226
                    (.022)                        (.022)                        (.026)
18                 1.2009                       1.1973                       1.2176              0.27806            -1.30098
                    (.013)                        (.013)                        (.015)
19                 1.2576                       1.2801                       1.3176              -1.32833           -3.55031
                    (.017)                        (.017)                        (.020)
20                 1.3846                       1.4081                       1.4867              -1.00132           -4.35127
                    (.023)                        (.024)                        (.027)


